Model Predictive Control of a Fuel Injection System with a Radial Basis Function Network Observer
نویسندگان
چکیده
Two new contributions are presented here. This paper proposes using a Model Predictive Control (MPC) incorporating a Radial Basis Function (RBF) Network Observer for the fuel injection problem. Firstly a RBF Network is used as an observer for the volumetric efficiency of the air system. This allows for gradual adaptation of the observer, ensuring the control scheme is capable of maintaining good performance under changing engine conditions brought about by engine wear, variations between individual engines and other similar factors. The other major contribution is the use of model predictive control algorithms to compensate for the fuel pooling effect on the intake manifold walls. Two MPC algorithms are presented which enforce input, and input and state constraints. A comparison between the two constrained MPC algorithms is qualitatively presented, and some conclusions drawn about the necessity of constraints for the fuel injection problem. Simulation and actual engine results will be presented that demonstrate the effectiveness of the control scheme.
منابع مشابه
Comparison of Single-dimensional and Multi-dimensional Optimization Approaches in Adaptive Model Predictive Control for Air-fuel Ratio of Si Engines
With development of fast modern computers, it has become possible to extend model predictive control (MPC) method to automotive engine control systems, which is traditionally applied to plants with dynamics slow enough to allow computations between samples. In this paper MPC based on an adaptive neural network model is attempted for air fuel ratio (AFR), in which the model is adapted on-line to...
متن کاملAdaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملSaturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study
In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...
متن کاملGaussian networks for fuel injection control
This paper proposes a radial basis function (RBF) based approach for the fuel injection control problem. In the past, neural controllers for this problem have centred on using a cerebellar model articulation controller (CMAC) type network with some success. The current production engine control units also use look-up tables in their fuel injection controllers, and if adaptation is permitted to ...
متن کاملAdaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کامل